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Abstract
Leslie, in the book Developments in the Theory of Turbulence (1973 Oxford:
Clarendon), offered a very simple and intuitively founded model for the case of
homogeneous anisotropic turbulence. Here, we offer a rigorous reformulation
of Leslie’s model leading to a general form for the velocity correlation tensor
that satisfies realizability conditions like symmetry in its tensor indices and
the condition of solenoidality arising from the incompressibility condition.
The anisotropic part of the correlation tensor involves two non-dimensional
constants—one arising from the pure strain term and the other from the term
that induces distortion in the wave vector space; the rapid pressure term
does not contribute. The estimates for these non-dimensional constants yield
encouraging results within this framework.

PACS numbers: 47.27.Gs, 47.27.Jv

1. Introduction

Most turbulent flows occurring in Nature are highly anisotropic and thus the understanding of
anisotropic turbulence is not only of practical importance but is also a theoretical challenge.
The well-known Kolmogorov phenomenology [1–4] assumes isotropy for the small-scale
turbulent motions—the effect of any anisotropy introduced at the large scales is expected to
diminish rapidly due to successive loss of memory as the energy cascades downward to the
smaller scales of motion. Experiments, however, have indicated that the anisotropy persists
down to the small scales [5, 6]. Simple phenomenological considerations, as suggested by
Lumley [7], indicate that the effect of anisotropy to a homogeneous turbulent field should
lead to a k−7/3 spectrum for the anisotropic part in addition to the isotropic k−5/3 Kolmogorov
spectrum.

The simplest anisotropic case is that of homogeneous shear flow with a uniform mean
velocity gradient S in one direction, namely, U1 = Sx2, U2 = U3 = 0, where Ui are the
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components of the mean velocity field. It was Leslie [8] who first considered this case on
the basis of Kraichnan’s closure formulations [9]. Leslie’s model is simple and intuitive
which assumes an equivalent problem where an isotropic ‘background’ field is assumed to
pre-exist which is assumed to be acted upon by the uniform shear. Thus the shear introduces
a perturbation to the isotropic background, the latter having been treated by Kraichnan’s
direct interaction and test-field pictures [10, 11]. However, as has been pointed out recently
[12, 13], Leslie’s velocity correlation tensor does not satisfy the realizability conditions,
namely, symmetry in the tensorial indices and solenoidality. It may be noted that it is much
of a surprise if these realizability conditions are violated, because they must be satisfied by
virtue of the definition of the correlation tensor in terms of the velocity field. Thus it is
straightforward to guess that Leslie’s calculations were not rigorous enough to maintain these
realizability conditions. The simplicity and the intuitive appeal of Leslie’s model tempts us to
consider it more carefully.

In this paper, we offer a rigorous reformulation of Leslie’s model leading to a general
form for the velocity correlation tensor that satisfies realizability conditions of symmetry in its
tensorial indices and the condition of solenoidality arising from the incompressibility condition
together with possessing reflection invariance. The anisotropic part of the correlation tensor
involves two non-dimensional constants—one arising from the pure strain term and the other
from the term that induces distortion in the wave vector space; the rapid pressure term does
not contribute. The estimates for these non-dimensional constants yield encouraging results
within this framework.

2. Leslie’s model

We shall begin with assuming a general form for the mean velocity: Ui = Sij xj , where the
strain Sij is uniform in space and constant in time, and Sii = 0 due to incompressibility.
On Reynolds decomposition [14–16] of the full velocity field, vi = Ui + ui , the Fourier
transformed dynamics of the fluctuating part ui is portrayed as(

∂

∂t
+ νk2

)
ui(k, t) +

i

2
Pijl(k)

∑
p+q=k

uj (p, t)ul(q, t) = fi(k, t) + λN̂ij (k)uj (k, t), (1)

with the operator

N̂ ij (k) = −Sij + 2
kikl

k2
Slj + δij klSlm

∂

∂km

(2)

where the first term indicates pure strain, the second term is the rapid pressure term, whereas
the last term signifies a distortion in the wave vector space [8, 14–16]. In equation (1), ν is the
kinematic viscosity, Pijl(k) = kjPil(k)+klPij (k) with Pij (k) = δij −kikj /k2, the summation
sign represents integrations on p and q with the triangle condition p + q = k, and, following
Leslie [8], λ (= 1) is inserted for use as an expansion parameter.

Leslie introduced the forcing term fi(k, t) in equation (1) in order to maintain a steady state
for the isotropic ‘background’ field u

(0)
i (k, t), whereas the λ-term is treated as a perturbation

about this isotropic background. Thus, using the perturbation expansion

ui(k, t) = u
(0)
i (k, t) + λu

(1)
i (k, t) + · · · (3)

and equating equal powers of λ leads to(
∂

∂t
+ νk2

)
u

(0)
i (k, t) +

i

2
Pijl(k)

∑
p+q=k

u
(0)
j (p, t)u

(0)
l (q, t) = fi(k, t) (4)
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and(
∂

∂t
+ νk2

)
u

(1)
i (k, t) + iPijl(k)

∑
p+q=k

u
(0)
j (p, t)u

(1)
l (q, t) = N̂ ij (k)u

(0)
j (k, t) (5)

up to the first order.
Leslie treated the equation for the isotropic background field, equation (4), in the direct-

interaction picture of Kraichnan [9], introducing a response tensor defined by the functional
derivative G

(0)
ij (k; t, t ′) = δu

(0)
i (k, t)/δfj (k, t ′), which is non-zero only for retarded effects

(t � t ′), leading to(
∂

∂t
+ νk2

)
δu

(0)
i (k, t) + iPijl(k)

∑
p+q=k

u
(0)
j (p, t)δu

(0)
l (q, t) = δfi(k, t) (6)

and(
∂

∂t
+ νk2

)
G

(0)
im (k; t, t ′) + iPijl(k)

∑
p+q=k

u
(0)
j (p, t)G

(0)
lm (q; t, t ′) = Pim(k)δ(t − t ′), (7)

with t � t ′. It can be seen that

δu
(0)
i (k, t) =

∫ t

−∞
dt ′G(0)

ij (k; t, t ′)δfj (k, t ′). (8)

Thus, the first-order perturbation is obtained from equation (5) as

u
(1)
i (k, t) =

∫ t

−∞
dt ′G(0)

ij (k; t, t ′)N̂jm(k)u(0)
m (k, t ′). (9)

Note that the integrand is in terms of the isotropic background field and the imposed anisotropy.
Based on the above equations, Leslie [8] found a form of the velocity correlation tensor

(defined in equation (10)). It is easy to see that the correlation tensor must possess the
properties of tensorial symmetry with respect to interchange of indices and the condition of
solenoidality due to the incompressibility condition. However, Leslie’s calculations were not
rigorous enough to maintain these properties of the velocity correlation.

3. Rigorous reformulation of Leslie’s model

As we have just noted, Leslie’s calculations for the velocity correlation tensor were not rigorous
enough to maintain the realizability conditions of tensorial symmetry and solenoidality. Thus,
in treating the correlation tensors, we deviate from Leslie, and take a rigorous approach. The
equal-time velocity correlation tensor is defined by

〈ui(k, t)uj (k′, t)〉 = Qij (k; t, t)δ3(k + k′) (10)

where the angular brackets denote an ensemble average and δ3(k + k′) is the Dirac delta
function in three dimensions. Using the perturbation expansion defined in equation (3),
the correlation tensor can be expanded perturbatively about the isotropic background as
Qij = Q

(0)
ij + λQ

(1)
ij + · · ·, with〈

u
(0)
i (k, t)u

(0)
j (k′, t)

〉 = Q
(0)
ij (k; t, t)δ3(k + k′) (11)

as the isotropic part, and the anisotropic part is given by〈
u

(1)
i (k, t)u

(0)
j (k′, t)

〉
+

〈
u

(0)
i (k, t)u

(1)
j (k′, t)

〉 = Q
(1)
ij (k; t, t)δ3(k + k′) (12)
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in the first order of the perturbation. Now we treat the first term in this equation by using
equation (9), giving

〈
u

(1)
i (k, t)u

(0)
j (k′, t)

〉 =
∫ t

−∞
dt ′G(0)

ia (k; t, t ′)
〈
u

(0)
j (k′, t)N̂ab(k)u

(0)
b (k, t ′)

〉
(13)

whereas the second term can be obtained from equation (13) by the simultaneous interchanges
(i ↔ j) and (k ↔ k′), denoted henceforth by [i, k ↔ j, k′].

On using equation (2) in equation (13), it can be easily seen that the right-hand side of
equation (12) involves three terms, which we will denote below by Q

(1,1)
ij ,Q

(1,2)
ij and Q

(1,3)
ijm

(excluding the Dirac delta functions), originating from the first, second, and third terms of
equation (2), respectively. The pure shear term (first term of equation (2)) gives rise to

Q
(1,1)
ij (k, k′; t, t) = −Sab

∫ t

−∞
dt ′G(0)

ia (k; t, t ′)Q(0)
jb (k′; t, t ′) + [i, k ↔ j, k′] (14)

with a note that the integrand contains two-time velocity correlation of the isotropic background
field.

The property of isotropy of the background field demands that isotropic parts of the
response and correlation tensors are expressible as X

(0)
ij (k; t, t ′) = X(0)(k; t, t ′)Pij (k), where

the symbol X stands for either G or Q. Thus the rapid pressure term (second term of
equation (2)) yields no contribution, namely, Q

(1,2)
ij = 0.

Now we shall consider the contribution coming from the third term of equation (2),
namely, Q

(1,3)
ijm , which gives the contribution due to the deformation in the wave vector space

due to the imposed mean strain. This term involves the derivative with respect to the wave
vector components. Transforming back to the configuration space by means of the inverse
Fourier transform

u
(0)
i (k, t) = 1

(2π)3

∫
d3x u

(0)
i (x, t) e−ik·x (15)

and using

Q
(0)
ij (x − x′; t, t ′) = 〈

u
(0)
i (x, t)u

(0)
j (x′, t ′)

〉 =
∫

d3kQ
(0)
ij (k; t, t ′) eik·(x−x′) (16)

we obtain the result〈
u

(0)
i (k′, t)

∂u
(0)
j (k, t ′)

∂km

〉
= Q

(0)
ij (k′; t, t ′)

∂δ3(k + k′)
∂(km + k′

m)
. (17)

Using this result, we obtain from equation (9)

Q
(1)
ij (k; t, t)δ3(k + k′) = Q

(1,1)
ij (k, k′; t, t)δ3(k + k′) + Q

(1,3)
ijm (k, k′; t, t)

∂δ3(k + k′)
∂(km + k′

m)
, (18)

with

Q
(1,3)
ijm (k, k′; t, t) = δabSlm

∫ t

−∞
dt ′klG

(0)
ia (k; t, t ′)Q(0)

jb (k′; t, t ′) + [i, k ↔ j, k′]. (19)

Now integrating both sides of equation (18) over k′, keeping k fixed, we arrive at

Q
(1)
ij (k; t, t) = Q

(1,1)
ij (k,−k; t, t) −

[
∂

∂k′
m

Q
(1,3)
ijm (k, k′; t, t)

]
k′=−k

(20)

where the last term results from integrating the last term of equation (18) by parts, contribution
from the surface term being zero. The right-hand terms of equation (20) can be readily
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evaluated using the expressions in equations (14) and (19) and the property of isotropy of the
response and correlation tensors associated with the background field, leading to

Q
(1)
ij (k; t, t) = Sab[Pia(k)Pjb(k) + Pja(k)Pib(k)]R(1,1)(k, t) + Slm

klkm

k2
Pij (k)R(1,3)(k, t)

(21)

where the terms involving the scalars R(1,1) and R(1,3) come from the terms involving Q
(1,1)
ij

and Q
(1,3)
ijm of equation (20), respectively, and

R(1,1)(k, t) = −
∫ t

−∞
dt ′G(0)(k; t, t ′)Q(0)(k; t, t ′) (22)

R(1,3)(k, t) =
∫ t

−∞
dt ′k

[
G(0)(k; t, t ′)

∂Q(0)(k; t, t ′)
∂k

− Q(0)(k; t, t ′)
∂G(0)(k; t, t ′)

∂k

]
. (23)

The anisotropic correlation tensor Q
(1)
ij (k; t, t), obtained as equation (21), clearly

displays that it is symmetric with respect to the interchange of tensorial indices, namely
Q

(1)
ij (k; t, t) = Q

(1)
j i (k; t, t), and it also satisfies the condition of solenoidality, namely

kiQ
(1)
ij (k; t, t) = 0.

We further observe that the specific form of the anisotropic correlation tensor Q
(1)
ij (k; t, t),

given by equation (21), resulted from our rigorous calculations. It is interesting to note that this
form is congruent with the form first postulated in [12] where a direct numerical simulation
(DNS) was performed.

4. Results

We take an exponential decay of the response, as also assumed by Leslie, namely

G(0)(k; t, t ′) = e−η(k)(t−t ′) for t � t ′

= 0 otherwise.
(24)

Further, like Leslie, we shall take Kraichnan’s test-field closure [10, 11] so that

Q(0)(k; t, t ′) = Q(0)(k; t, t)G(0)(k; t, t ′). (25)

We shall also follow the prescription of switching to three η’s in the denominators as suggested
by Leslie [8].

Using these assumptions, and carrying out the integrations in equations (22) and (23), we
obtain

R(1,1)(k) = −1

3

q(0)(k)

η(k)
and R(1,3)(k) = 1

3

k

η(k)

∂q(0)(k)

∂k
, (26)

where q(0)(k) = Q(0)(k; t, t). The Kolmogorov scaling [1–3] suggests that

q(0)(k) = C

4π
ε̄2/3k−11/3, (27)

where C is the Kolmogorov constant appearing in the relation for energy spectrum,
E(k) = Cε̄2/3k−5/3, and ε̄ is the energy dissipation rate. Kraichnan [11] defined another
constant µ given by η(k) = µ

√
Cε̄1/3k2/3. Using these scaling laws, we get

R(1,1)(k) = Aε̄1/3k−13/3 and R(1,3)(k) = Bε̄1/3k−13/3, (28)
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where

A = − 1

12π

√
C

µ
and B = − 11

36π

√
C

µ
. (29)

Thus we obtain the ratio
B

A
= 11

3
. (30)

This ratio may be compared with those obtained by DNS, namely ∼2.5 in [12], and by
experiment, namely ≈2.65 in [17].

We can also obtain estimates for the non-dimensional numbers A and B. The ratio C/µ2/3

was evaluated by Kraichnan [11] numerically using the energy transport equation of the DIA,
yielding C = 3.022µ2/3. Using this result, we can obtain the non-dimensional constants in
terms of the Kolmogorov constant:

A = − 1

12π

(3.022)3/2

C
and B = − 11

36π

(3.022)3/2

C
(31)

so that, using the test field value C = 1.4 [11], obtained by Kraichnan via numerical integration
of the test-field closure equations, yields A = −0.10 and B = −0.37.

On the other hand, using the analytical result C = 1.64 [18], obtained anlytically by
means of perturbative evaluation (double expansion), yields A = −0.09 and B = −0.31.

5. Discussions

We carried out a rigorous reformulation of Leslie’s model yielding a general form for the
velocity correlation tensor. This correlation is found to possess the realizability conditions
of symmetry with respect to interchange of indices and the property of solenoidality coming
from incompressibility. However, Leslie’s original formulation was unable to maintain these
properties. It is expected that these realizability conditions must be satisfied by virtue of the
definition of the correlation tensor. Therefore, it comes as a surprise when Leslie’s model
violated these conditions. To solve this puzzle, we have performed a rigorous reformulation of
the Leslie’s model and shown that Leslie’s model indeed reproduces both the above realizability
conditions for the correlation tensor. Moreover, the present formulation reproduces the specific
tensorial form which has been postulated recently [12] where a DNS was performed.

The quantitative estimates within this reformulated Leslie’s model are also impressive.
The estimates for the non-dimensional constants, namely A = −0.10 and B = −0.37,
obtained in our calculations presented herein are encouraging when we consider the level of
approximations involved in the calculations. These values are not far from the DNS values
A = −0.16 ± 0.03 and B = −0.40 ± 0.06 [12] and the experimental values A ≈ −0.17
and B ≈ −0.45 [17]. The values A = −0.09 and B = −0.31, based on the perturbative
evaluation of the test-field closure equations, although slightly underestimate the numbers, are
acceptable. It may be noted that analytical calculations based on the Lagrangian renormalized
approximation (LRA) [13] yields A = −0.12±0.002 and B = −0.009±0.014; the value of B
is rather unsatisfactory when compared with the DNS and experimental values. In comparison,
the value of B predicted by Leslie’s model is in better agreement with DNS and experiment.
These results clearly indicate the power of the underlying assumptions in Leslie’s model and
encourage us to consider Leslie’s model seriously. As future work, it would be worthwhile
to carry out a renormalization group analysis of the Leslie’s model in the context of earlier
work [19–21]. It may also be noted that an approach similar to that presented here can be
applied to other physical problems such as zonal flow generation in an anisotropic turbulence
regime [22].
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We would also like to discuss about the nature of approximation used in the present
calculation. The perturbation expansion in the parameter λ seems to suggest that the results
are applicable only for weak anisotropy cases. However, when we consider the next higher
order terms in the perturbation expansion, it can be seen that they lead to additional terms
for the anisotropic correlation which scale as k−5. This order of contribution is irrelevant
as compared to the present order of contribution (k−13/3) in the high wavenumber regime
(cf equations (28)). Correspondingly, the k−13/3 contributions would dominate over the k−5

contributions even for higher shear cases.
Further, the fact that the total energy should be positive definite can be regarded as

an additional realizability condition in addition to the previously quoted ones, namely
solenoidality and symmetry. The total energy W can be calculated by taking the trace of the
correlation tensor and integrating over the k-space, namely W = 1

2

∫
Qii(k) d3k. Noting that

Q
(1)
ii (k) = 2[R(1,3)(k) − R(1,1)(k)]Slmklkm/k2, we see that the integral

∫
Q

(1)
ii (k) d3k vanishes

because the angular integration generates a Kronecker delta, namely δlm. Thus the anisotropic
part of the correlation tensor contributes nothing to the total energy W . Consequently, it is
only the isotropic part, namely Q

(0)
ij (k) = q(0)(k)Pij (k), that contributes to the total energy W .

Calculation yields a positive quantity, viz, W ∼ ε̄2/3L2/3, where L is the scale associated with
the largest eddies in the flow region.

We also note that the form of the anisotropic part of correlation tensor as obtained
in equation (21) (and hence the realizability properties of its solenoidality and symmetry
in the indices) is an automatic consequence of the dynamics given by Leslie’s model. It
contains the scaling functions R(1,1)(k) and R(1,3)(k) which are given by equations (28) and
we have demonstrated that they are calculable. Quite interestingly, a recent work has shown
that a general form of the correlation tensor can be obtained by imposing the conditions of
solenoidality and symmetry and using geometric properties related with tensors [23].

We finally note that the phenomenon of intermittency in homogeneous anisotropic
turbulence has been analysed by decomposing the correlation function (and the structure
functions) in the irreducible representations of the SO(3) rotation group [24]. This analysis
gives the (anomalous) scaling exponents belonging to different sectors of the symmetry
group. Particularly, a simplified model (linear pressure model) yields the exponents 11

3 , 4.25,

5.02, 7.05, . . . , whereas a closure approximation yields 11
3 , 4.36, 4.99, 6.98, . . . in the sectors

� = 0, 2, 4, 6, . . . , respectively. The deviations of these values from 11
3 , 13

3 , 5, 17
3 , . . .

demonstrates the role of intermittency in the anisotropic sectors � = 2, 4, 6, . . . within those
model calculations. It can be guessed that the anomalous scaling exponents form an increasing
spectrum thereby suggesting that the effect of anisotropy diminishes with decreasing scale.
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